Task 10324772

Name ParityModified-1639956799-25721-1-0_0
Workunit 7672361
Created 2 Jan 2022, 16:25:32 UTC
Sent 16 Jan 2022, 14:12:49 UTC
Report deadline 24 Jan 2022, 14:12:49 UTC
Received 9 Feb 2022, 4:18:49 UTC
Server state Over
Outcome Success
Client state Done
Exit status 0 (0x00000000)
Computer ID 11391
Run time 3 days 7 hours 7 min 51 sec
CPU time 12 hours 23 min 19 sec
Validate state Task was reported too late to validate
Credit 0.00
Device peak FLOPS 1,441.83 GFLOPS
Application version Machine Learning Dataset Generator (GPU) v9.75 (cuda10200)
windows_x86_64
Peak working set size 1.54 GB
Peak swap size 3.44 GB
Peak disk usage 1.54 GB

Stderr output

<core_client_version>7.16.20</core_client_version>
<![CDATA[
<stderr_txt>
: 4
[2022-01-28 01:46:25	                main:484]	:	INFO	:	    # Threads: 1
[2022-01-28 01:46:25	                main:486]	:	INFO	:	Preparing Dataset
[2022-01-28 01:46:27	load_hdf5_ds_into_tensor:28]	:	INFO	:	Loading Dataset /Xt from dataset.hdf5 into memory
[2022-01-28 01:46:55	load_hdf5_ds_into_tensor:28]	:	INFO	:	Loading Dataset /Yt from dataset.hdf5 into memory
[2022-01-28 01:50:32	                load:106]	:	INFO	:	Successfully loaded dataset of 2048 examples into memory.
[2022-01-28 01:50:32	load_hdf5_ds_into_tensor:28]	:	INFO	:	Loading Dataset /Xv from dataset.hdf5 into memory
[2022-01-28 01:50:37	load_hdf5_ds_into_tensor:28]	:	INFO	:	Loading Dataset /Yv from dataset.hdf5 into memory
[2022-01-28 01:50:45	                load:106]	:	INFO	:	Successfully loaded dataset of 512 examples into memory.
[2022-01-28 01:50:46	                main:494]	:	INFO	:	Creating Model
[2022-01-28 01:50:47	                main:507]	:	INFO	:	Preparing config file
[2022-01-28 01:50:47	                main:511]	:	INFO	:	Found checkpoint, attempting to load... 
[2022-01-28 01:50:47	                main:512]	:	INFO	:	Loading config
[2022-01-28 01:50:48	                main:514]	:	INFO	:	Loading state
[2022-01-28 01:54:37	                main:559]	:	INFO	:	Loading DataLoader into Memory
[2022-01-28 01:54:48	                main:562]	:	INFO	:	Starting Training
[2022-01-28 02:22:50	                main:574]	:	INFO	:	Epoch 1712 | loss: 0.0311436 | val_loss: 0.0311777 | Time: 1.67584e+06 ms
[2022-01-28 02:35:41	                main:574]	:	INFO	:	Epoch 1713 | loss: 0.0311258 | val_loss: 0.031169 | Time: 718989 ms
[2022-01-28 02:43:20	                main:574]	:	INFO	:	Epoch 1714 | loss: 0.031123 | val_loss: 0.0311696 | Time: 453192 ms
[2022-01-28 02:47:29	                main:574]	:	INFO	:	Epoch 1715 | loss: 0.0311177 | val_loss: 0.031168 | Time: 233248 ms
[2022-01-28 02:50:34	                main:574]	:	INFO	:	Epoch 1716 | loss: 0.0311153 | val_loss: 0.0311757 | Time: 179562 ms
[2022-01-28 02:53:18	                main:574]	:	INFO	:	Epoch 1717 | loss: 0.0311157 | val_loss: 0.0311715 | Time: 162611 ms
[2022-01-28 02:56:41	                main:574]	:	INFO	:	Epoch 1718 | loss: 0.0311156 | val_loss: 0.0311772 | Time: 195000 ms
[2022-01-28 02:59:57	                main:574]	:	INFO	:	Epoch 1719 | loss: 0.0311131 | val_loss: 0.0311722 | Time: 196191 ms
[2022-01-28 03:02:38	                main:574]	:	INFO	:	Epoch 1720 | loss: 0.0311134 | val_loss: 0.0311765 | Time: 159574 ms
[2022-01-28 03:05:29	                main:574]	:	INFO	:	Epoch 1721 | loss: 0.0311129 | val_loss: 0.0311735 | Time: 170896 ms
[2022-01-28 03:08:30	                main:574]	:	INFO	:	Epoch 1722 | loss: 0.0311183 | val_loss: 0.0311755 | Time: 178253 ms
[2022-01-28 03:11:06	                main:574]	:	INFO	:	Epoch 1723 | loss: 0.0311167 | val_loss: 0.0311704 | Time: 155901 ms
[2022-01-28 03:14:15	                main:574]	:	INFO	:	Epoch 1724 | loss: 0.0311133 | val_loss: 0.031172 | Time: 185679 ms
[2022-01-28 03:17:24	                main:574]	:	INFO	:	Epoch 1725 | loss: 0.0311218 | val_loss: 0.0311696 | Time: 188228 ms
[2022-01-28 03:20:20	                main:574]	:	INFO	:	Epoch 1726 | loss: 0.0311195 | val_loss: 0.0311694 | Time: 170015 ms
[2022-01-28 03:22:32	                main:574]	:	INFO	:	Epoch 1727 | loss: 0.0311188 | val_loss: 0.0311719 | Time: 131612 ms
[2022-01-28 03:33:14	                main:574]	:	INFO	:	Epoch 1728 | loss: 0.0311165 | val_loss: 0.0311744 | Time: 636780 ms
[2022-01-28 03:50:45	                main:574]	:	INFO	:	Epoch 1729 | loss: 0.0311185 | val_loss: 0.03117 | Time: 954817 ms
[2022-01-28 04:05:52	                main:574]	:	INFO	:	Epoch 1730 | loss: 0.0311137 | val_loss: 0.0311791 | Time: 904740 ms
[2022-01-28 04:23:36	                main:574]	:	INFO	:	Epoch 1731 | loss: 0.0311123 | val_loss: 0.0311712 | Time: 1.05964e+06 ms
[2022-01-28 04:28:25	                main:574]	:	INFO	:	Epoch 1732 | loss: 0.0311158 | val_loss: 0.0311749 | Time: 266504 ms
[2022-01-28 04:30:28	                main:574]	:	INFO	:	Epoch 1733 | loss: 0.031114 | val_loss: 0.0311742 | Time: 121335 ms
[2022-01-28 04:34:04	                main:574]	:	INFO	:	Epoch 1734 | loss: 0.0311135 | val_loss: 0.0311809 | Time: 214636 ms
[2022-01-28 04:36:07	                main:574]	:	INFO	:	Epoch 1735 | loss: 0.0311096 | val_loss: 0.0311766 | Time: 115457 ms
[2022-01-28 04:38:11	                main:574]	:	INFO	:	Epoch 1736 | loss: 0.0311084 | val_loss: 0.0311781 | Time: 124060 ms
[2022-01-28 04:40:12	                main:574]	:	INFO	:	Epoch 1737 | loss: 0.0311081 | val_loss: 0.0311765 | Time: 118557 ms
[2022-01-28 04:42:22	                main:574]	:	INFO	:	Epoch 1738 | loss: 0.0311104 | val_loss: 0.031177 | Time: 129367 ms
[2022-01-28 04:45:00	                main:574]	:	INFO	:	Epoch 1739 | loss: 0.0311112 | val_loss: 0.0311739 | Time: 154851 ms
[2022-01-28 04:47:18	                main:574]	:	INFO	:	Epoch 1740 | loss: 0.03111 | val_loss: 0.0311814 | Time: 138048 ms
[2022-01-28 04:49:22	                main:574]	:	INFO	:	Epoch 1741 | loss: 0.0311081 | val_loss: 0.0311776 | Time: 123278 ms
[2022-01-28 04:51:10	                main:574]	:	INFO	:	Epoch 1742 | loss: 0.0311097 | val_loss: 0.031174 | Time: 108194 ms
[2022-01-28 04:54:24	                main:574]	:	INFO	:	Epoch 1743 | loss: 0.0311117 | val_loss: 0.0311667 | Time: 191348 ms
[2022-01-28 04:56:10	                main:574]	:	INFO	:	Epoch 1744 | loss: 0.0311112 | val_loss: 0.0311724 | Time: 105885 ms
[2022-01-28 04:58:19	                main:574]	:	INFO	:	Epoch 1745 | loss: 0.031121 | val_loss: 0.0311728 | Time: 122019 ms
[2022-01-28 05:00:25	                main:574]	:	INFO	:	Epoch 1746 | loss: 0.0311215 | val_loss: 0.0311716 | Time: 126029 ms
[2022-01-28 05:02:02	                main:574]	:	INFO	:	Epoch 1747 | loss: 0.031118 | val_loss: 0.0311751 | Time: 92118 ms
[2022-01-28 05:04:28	                main:574]	:	INFO	:	Epoch 1748 | loss: 0.0311186 | val_loss: 0.0311692 | Time: 145985 ms
[2022-01-28 05:06:17	                main:574]	:	INFO	:	Epoch 1749 | loss: 0.0311148 | val_loss: 0.0311727 | Time: 103478 ms
[2022-01-28 05:08:07	                main:574]	:	INFO	:	Epoch 1750 | loss: 0.0311151 | val_loss: 0.0311695 | Time: 108093 ms
[2022-01-28 05:10:31	                main:574]	:	INFO	:	Epoch 1751 | loss: 0.0311167 | val_loss: 0.0311712 | Time: 134200 ms
[2022-01-28 05:13:46	                main:574]	:	INFO	:	Epoch 1752 | loss: 0.0311165 | val_loss: 0.0311697 | Time: 193480 ms
[2022-01-28 05:17:05	                main:574]	:	INFO	:	Epoch 1753 | loss: 0.0311162 | val_loss: 0.0311744 | Time: 189724 ms
[2022-01-28 05:19:21	                main:574]	:	INFO	:	Epoch 1754 | loss: 0.031115 | val_loss: 0.0311705 | Time: 135959 ms
[2022-01-28 05:21:12	                main:574]	:	INFO	:	Epoch 1755 | loss: 0.0311134 | val_loss: 0.0311703 | Time: 100514 ms
[2022-01-28 05:23:25	                main:574]	:	INFO	:	Epoch 1756 | loss: 0.0311136 | val_loss: 0.031173 | Time: 132683 ms
[2022-01-28 05:42:29	                main:574]	:	INFO	:	Epoch 1757 | loss: 0.0311109 | val_loss: 0.0311752 | Time: 1.1198e+06 ms
[2022-01-28 06:02:37	                main:574]	:	INFO	:	Epoch 1758 | loss: 0.031111 | val_loss: 0.0311716 | Time: 1.16272e+06 ms
[2022-01-28 06:06:20	                main:574]	:	INFO	:	Epoch 1759 | loss: 0.0311106 | val_loss: 0.0311763 | Time: 163726 ms
[2022-01-28 06:13:55	                main:574]	:	INFO	:	Epoch 1760 | loss: 0.0311136 | val_loss: 0.0311763 | Time: 454881 ms
Machine Learning Dataset Generator v9.75 (Windows/x64) (libTorch: release/1.6 GPU: NVIDIA GeForce GTX 950M)
[2022-01-29 01:47:46	                main:435]	:	INFO	:	Set logging level to 1
[2022-01-29 01:47:46	                main:441]	:	INFO	:	Running in BOINC Client mode
[2022-01-29 01:47:46	                main:444]	:	INFO	:	Resolving all filenames
[2022-01-29 01:47:46	                main:452]	:	INFO	:	Resolved: dataset.hdf5 => dataset.hdf5 (exists = 1)
[2022-01-29 01:47:46	                main:452]	:	INFO	:	Resolved: model.cfg => model.cfg (exists = 1)
[2022-01-29 01:47:46	                main:452]	:	INFO	:	Resolved: model-final.pt => model-final.pt (exists = 0)
[2022-01-29 01:47:47	                main:452]	:	INFO	:	Resolved: model-input.pt => model-input.pt (exists = 1)
[2022-01-29 01:47:47	                main:452]	:	INFO	:	Resolved: snapshot.pt => snapshot.pt (exists = 1)
[2022-01-29 01:47:47	                main:472]	:	INFO	:	Dataset filename: dataset.hdf5
[2022-01-29 01:47:47	                main:474]	:	INFO	:	Configuration: 
[2022-01-29 01:47:47	                main:475]	:	INFO	:	    Model type: GRU
[2022-01-29 01:47:47	                main:476]	:	INFO	:	    Validation Loss Threshold: 0.0001
[2022-01-29 01:47:47	                main:477]	:	INFO	:	    Max Epochs: 2048
[2022-01-29 01:47:47	                main:478]	:	INFO	:	    Batch Size: 128
[2022-01-29 01:47:47	                main:479]	:	INFO	:	    Learning Rate: 0.01
[2022-01-29 01:47:47	                main:480]	:	INFO	:	    Patience: 10
[2022-01-29 01:47:47	                main:481]	:	INFO	:	    Hidden Width: 12
[2022-01-29 01:47:47	                main:482]	:	INFO	:	    # Recurrent Layers: 4
[2022-01-29 01:47:47	                main:483]	:	INFO	:	    # Backend Layers: 4
[2022-01-29 01:47:47	                main:484]	:	INFO	:	    # Threads: 1
[2022-01-29 01:47:47	                main:486]	:	INFO	:	Preparing Dataset
[2022-01-29 01:47:48	load_hdf5_ds_into_tensor:28]	:	INFO	:	Loading Dataset /Xt from dataset.hdf5 into memory
[2022-01-29 01:48:09	load_hdf5_ds_into_tensor:28]	:	INFO	:	Loading Dataset /Yt from dataset.hdf5 into memory
[2022-01-29 01:56:30	                load:106]	:	INFO	:	Successfully loaded dataset of 2048 examples into memory.
[2022-01-29 01:56:30	load_hdf5_ds_into_tensor:28]	:	INFO	:	Loading Dataset /Xv from dataset.hdf5 into memory
[2022-01-29 01:56:52	load_hdf5_ds_into_tensor:28]	:	INFO	:	Loading Dataset /Yv from dataset.hdf5 into memory
[2022-01-29 01:57:07	                load:106]	:	INFO	:	Successfully loaded dataset of 512 examples into memory.
[2022-01-29 01:57:07	                main:494]	:	INFO	:	Creating Model
[2022-01-29 01:57:07	                main:507]	:	INFO	:	Preparing config file
[2022-01-29 01:57:08	                main:511]	:	INFO	:	Found checkpoint, attempting to load... 
[2022-01-29 01:57:08	                main:512]	:	INFO	:	Loading config
[2022-01-29 01:57:08	                main:514]	:	INFO	:	Loading state
[2022-01-29 02:00:47	                main:559]	:	INFO	:	Loading DataLoader into Memory
[2022-01-29 02:00:48	                main:562]	:	INFO	:	Starting Training
[2022-01-29 02:07:03	                main:574]	:	INFO	:	Epoch 1761 | loss: 0.0311454 | val_loss: 0.0311775 | Time: 374904 ms
[2022-01-29 02:10:08	                main:574]	:	INFO	:	Epoch 1762 | loss: 0.0311188 | val_loss: 0.0311799 | Time: 171873 ms
[2022-01-29 02:13:22	                main:574]	:	INFO	:	Epoch 1763 | loss: 0.0311124 | val_loss: 0.0311715 | Time: 193894 ms
[2022-01-29 02:16:29	                main:574]	:	INFO	:	Epoch 1764 | loss: 0.0311106 | val_loss: 0.0311701 | Time: 171366 ms
[2022-01-29 02:19:21	                main:574]	:	INFO	:	Epoch 1765 | loss: 0.0311101 | val_loss: 0.031177 | Time: 171349 ms
[2022-01-29 02:22:40	                main:574]	:	INFO	:	Epoch 1766 | loss: 0.0311153 | val_loss: 0.0311707 | Time: 197557 ms
[2022-01-29 02:25:51	                main:574]	:	INFO	:	Epoch 1767 | loss: 0.0311133 | val_loss: 0.0311771 | Time: 178345 ms
[2022-01-29 02:28:45	                main:574]	:	INFO	:	Epoch 1768 | loss: 0.0311131 | val_loss: 0.0311715 | Time: 173954 ms
[2022-01-29 02:31:26	                main:574]	:	INFO	:	Epoch 1769 | loss: 0.0311112 | val_loss: 0.0311767 | Time: 151549 ms
[2022-01-29 02:34:13	                main:574]	:	INFO	:	Epoch 1770 | loss: 0.0311118 | val_loss: 0.0311754 | Time: 166354 ms
[2022-01-29 02:37:37	                main:574]	:	INFO	:	Epoch 1771 | loss: 0.03111 | val_loss: 0.0311718 | Time: 191788 ms
[2022-01-29 02:39:59	                main:574]	:	INFO	:	Epoch 1772 | loss: 0.0311088 | val_loss: 0.0311709 | Time: 140340 ms
[2022-01-29 02:43:17	                main:574]	:	INFO	:	Epoch 1773 | loss: 0.0311059 | val_loss: 0.0311752 | Time: 180144 ms
[2022-01-29 02:45:31	                main:574]	:	INFO	:	Epoch 1774 | loss: 0.0311071 | val_loss: 0.0311759 | Time: 133588 ms
[2022-01-29 02:47:25	                main:574]	:	INFO	:	Epoch 1775 | loss: 0.0311112 | val_loss: 0.031171 | Time: 104443 ms
[2022-01-29 02:49:44	                main:574]	:	INFO	:	Epoch 1776 | loss: 0.0311103 | val_loss: 0.03118 | Time: 138716 ms
[2022-01-29 02:52:13	                main:574]	:	INFO	:	Epoch 1777 | loss: 0.0311066 | val_loss: 0.0311714 | Time: 137799 ms
[2022-01-29 02:54:37	                main:574]	:	INFO	:	Epoch 1778 | loss: 0.0311096 | val_loss: 0.0311774 | Time: 142907 ms
[2022-01-29 02:56:56	                main:574]	:	INFO	:	Epoch 1779 | loss: 0.031113 | val_loss: 0.031172 | Time: 130745 ms
[2022-01-29 02:59:52	                main:574]	:	INFO	:	Epoch 1780 | loss: 0.0311189 | val_loss: 0.0311737 | Time: 175544 ms
[2022-01-29 03:02:14	                main:574]	:	INFO	:	Epoch 1781 | loss: 0.0311182 | val_loss: 0.0311723 | Time: 132974 ms
[2022-01-29 03:04:42	                main:574]	:	INFO	:	Epoch 1782 | loss: 0.031118 | val_loss: 0.0311678 | Time: 148172 ms
[2022-01-29 03:07:38	                main:574]	:	INFO	:	Epoch 1783 | loss: 0.031117 | val_loss: 0.0311695 | Time: 164520 ms
[2022-01-29 03:10:03	                main:574]	:	INFO	:	Epoch 1784 | loss: 0.0311158 | val_loss: 0.0311693 | Time: 143939 ms
[2022-01-29 03:13:50	                main:574]	:	INFO	:	Epoch 1785 | loss: 0.0311138 | val_loss: 0.0311703 | Time: 224582 ms
[2022-01-29 03:17:42	                main:574]	:	INFO	:	Epoch 1786 | loss: 0.0311103 | val_loss: 0.0311759 | Time: 205269 ms
[2022-01-29 03:20:38	                main:574]	:	INFO	:	Epoch 1787 | loss: 0.0311132 | val_loss: 0.0311682 | Time: 171208 ms
[2022-01-29 03:23:09	                main:574]	:	INFO	:	Epoch 1788 | loss: 0.0311149 | val_loss: 0.0311708 | Time: 150348 ms
[2022-01-29 03:26:08	                main:574]	:	INFO	:	Epoch 1789 | loss: 0.0311145 | val_loss: 0.0311734 | Time: 166974 ms
[2022-01-29 03:29:24	                main:574]	:	INFO	:	Epoch 1790 | loss: 0.0311154 | val_loss: 0.0311643 | Time: 195875 ms
[2022-01-29 03:33:30	                main:574]	:	INFO	:	Epoch 1791 | loss: 0.0311162 | val_loss: 0.03117 | Time: 218071 ms
[2022-01-29 03:36:16	                main:574]	:	INFO	:	Epoch 1792 | loss: 0.0311157 | val_loss: 0.0311742 | Time: 162043 ms
[2022-01-29 03:39:23	                main:574]	:	INFO	:	Epoch 1793 | loss: 0.0311129 | val_loss: 0.0311708 | Time: 186552 ms
[2022-01-29 03:41:52	                main:574]	:	INFO	:	Epoch 1794 | loss: 0.0311127 | val_loss: 0.031167 | Time: 140165 ms
[2022-01-29 03:44:38	                main:574]	:	INFO	:	Epoch 1795 | loss: 0.0311138 | val_loss: 0.0311786 | Time: 163723 ms
[2022-01-29 03:48:43	                main:574]	:	INFO	:	Epoch 1796 | loss: 0.0311115 | val_loss: 0.031177 | Time: 237536 ms
[2022-01-29 03:52:04	                main:574]	:	INFO	:	Epoch 1797 | loss: 0.0311141 | val_loss: 0.0311713 | Time: 194620 ms
[2022-01-29 03:54:54	                main:574]	:	INFO	:	Epoch 1798 | loss: 0.0311128 | val_loss: 0.0311715 | Time: 168796 ms
[2022-01-29 03:57:42	                main:574]	:	INFO	:	Epoch 1799 | loss: 0.0311129 | val_loss: 0.0311733 | Time: 156524 ms
[2022-01-29 04:00:36	                main:574]	:	INFO	:	Epoch 1800 | loss: 0.0311143 | val_loss: 0.0311663 | Time: 173926 ms
[2022-01-29 04:02:52	                main:574]	:	INFO	:	Epoch 1801 | loss: 0.031118 | val_loss: 0.0311756 | Time: 127693 ms
[2022-01-29 04:05:38	                main:574]	:	INFO	:	Epoch 1802 | loss: 0.0311288 | val_loss: 0.031166 | Time: 166231 ms
[2022-01-29 04:07:48	                main:574]	:	INFO	:	Epoch 1803 | loss: 0.0311233 | val_loss: 0.0311729 | Time: 122550 ms
[2022-01-29 04:09:24	                main:574]	:	INFO	:	Epoch 1804 | loss: 0.0311189 | val_loss: 0.0311777 | Time: 95750.4 ms
[2022-01-29 04:12:26	                main:574]	:	INFO	:	Epoch 1805 | loss: 0.0311339 | val_loss: 0.0311721 | Time: 165389 ms
[2022-01-29 04:14:52	                main:574]	:	INFO	:	Epoch 1806 | loss: 0.0311514 | val_loss: 0.0311628 | Time: 145912 ms
[2022-01-29 04:18:04	                main:574]	:	INFO	:	Epoch 1807 | loss: 0.031147 | val_loss: 0.031166 | Time: 169660 ms
[2022-01-29 04:20:24	                main:574]	:	INFO	:	Epoch 1808 | loss: 0.0311389 | val_loss: 0.0311674 | Time: 139590 ms
[2022-01-29 04:22:53	                main:574]	:	INFO	:	Epoch 1809 | loss: 0.0311339 | val_loss: 0.0311608 | Time: 138488 ms
[2022-01-29 04:29:03	                main:574]	:	INFO	:	Epoch 1810 | loss: 0.0311304 | val_loss: 0.0311639 | Time: 368807 ms
[2022-01-29 04:31:37	                main:574]	:	INFO	:	Epoch 1811 | loss: 0.0311281 | val_loss: 0.0311646 | Time: 143228 ms
[2022-01-29 04:33:47	                main:574]	:	INFO	:	Epoch 1812 | loss: 0.0311289 | val_loss: 0.031166 | Time: 129234 ms
[2022-01-29 04:40:28	                main:574]	:	INFO	:	Epoch 1813 | loss: 0.0311253 | val_loss: 0.0311679 | Time: 388937 ms
[2022-01-29 04:47:05	                main:574]	:	INFO	:	Epoch 1814 | loss: 0.0311235 | val_loss: 0.0311687 | Time: 388190 ms
[2022-01-29 04:58:11	                main:574]	:	INFO	:	Epoch 1815 | loss: 0.0311219 | val_loss: 0.0311744 | Time: 664577 ms
[2022-01-29 05:05:50	                main:574]	:	INFO	:	Epoch 1816 | loss: 0.0311227 | val_loss: 0.0311721 | Time: 430560 ms
[2022-01-29 05:17:06	                main:574]	:	INFO	:	Epoch 1817 | loss: 0.0311259 | val_loss: 0.0311659 | Time: 670667 ms
[2022-01-29 05:25:34	                main:574]	:	INFO	:	Epoch 1818 | loss: 0.031124 | val_loss: 0.03117 | Time: 468270 ms
[2022-01-29 05:31:04	                main:574]	:	INFO	:	Epoch 1819 | loss: 0.031121 | val_loss: 0.0311736 | Time: 297971 ms
[2022-01-29 05:35:33	                main:574]	:	INFO	:	Epoch 1820 | loss: 0.031121 | val_loss: 0.0311686 | Time: 255879 ms
[2022-01-29 05:39:01	                main:574]	:	INFO	:	Epoch 1821 | loss: 0.0311202 | val_loss: 0.0311718 | Time: 196546 ms
[2022-01-29 05:41:41	                main:574]	:	INFO	:	Epoch 1822 | loss: 0.0311182 | val_loss: 0.0311716 | Time: 159415 ms
[2022-01-29 05:44:19	                main:574]	:	INFO	:	Epoch 1823 | loss: 0.0311165 | val_loss: 0.0311696 | Time: 147563 ms
[2022-01-29 05:47:47	                main:574]	:	INFO	:	Epoch 1824 | loss: 0.031123 | val_loss: 0.0311711 | Time: 208560 ms
[2022-01-29 05:55:23	                main:574]	:	INFO	:	Epoch 1825 | loss: 0.0311174 | val_loss: 0.0311737 | Time: 444359 ms
[2022-01-29 06:02:52	                main:574]	:	INFO	:	Epoch 1826 | loss: 0.0311168 | val_loss: 0.0311774 | Time: 420159 ms
[2022-01-29 06:08:51	                main:574]	:	INFO	:	Epoch 1827 | loss: 0.0311161 | val_loss: 0.0311715 | Time: 350618 ms
[2022-01-29 06:13:34	                main:574]	:	INFO	:	Epoch 1828 | loss: 0.0311154 | val_loss: 0.0311729 | Time: 275684 ms
[2022-01-29 06:17:57	                main:574]	:	INFO	:	Epoch 1829 | loss: 0.0311132 | val_loss: 0.031174 | Time: 239242 ms
[2022-01-29 06:21:35	                main:574]	:	INFO	:	Epoch 1830 | loss: 0.0311135 | val_loss: 0.0311692 | Time: 214211 ms
[2022-01-29 06:25:33	                main:574]	:	INFO	:	Epoch 1831 | loss: 0.0311126 | val_loss: 0.031176 | Time: 224216 ms
[2022-01-29 06:31:12	                main:574]	:	INFO	:	Epoch 1832 | loss: 0.0311101 | val_loss: 0.0311783 | Time: 328053 ms
Machine Learning Dataset Generator v9.75 (Windows/x64) (libTorch: release/1.6 GPU: NVIDIA GeForce GTX 950M)
[2022-02-08 01:16:46	                main:435]	:	INFO	:	Set logging level to 1
[2022-02-08 01:16:50	                main:441]	:	INFO	:	Running in BOINC Client mode
[2022-02-08 01:16:51	                main:444]	:	INFO	:	Resolving all filenames
[2022-02-08 01:16:52	                main:452]	:	INFO	:	Resolved: dataset.hdf5 => dataset.hdf5 (exists = 1)
[2022-02-08 01:16:53	                main:452]	:	INFO	:	Resolved: model.cfg => model.cfg (exists = 1)
[2022-02-08 01:16:54	                main:452]	:	INFO	:	Resolved: model-final.pt => model-final.pt (exists = 0)
[2022-02-08 01:16:55	                main:452]	:	INFO	:	Resolved: model-input.pt => model-input.pt (exists = 1)
[2022-02-08 01:16:59	                main:452]	:	INFO	:	Resolved: snapshot.pt => snapshot.pt (exists = 1)
[2022-02-08 01:16:59	                main:472]	:	INFO	:	Dataset filename: dataset.hdf5
[2022-02-08 01:17:00	                main:474]	:	INFO	:	Configuration: 
[2022-02-08 01:17:01	                main:475]	:	INFO	:	    Model type: GRU
[2022-02-08 01:17:02	                main:476]	:	INFO	:	    Validation Loss Threshold: 0.0001
[2022-02-08 01:17:02	                main:477]	:	INFO	:	    Max Epochs: 2048
[2022-02-08 01:17:03	                main:478]	:	INFO	:	    Batch Size: 128
[2022-02-08 01:17:03	                main:479]	:	INFO	:	    Learning Rate: 0.01
[2022-02-08 01:17:03	                main:480]	:	INFO	:	    Patience: 10
[2022-02-08 01:17:03	                main:481]	:	INFO	:	    Hidden Width: 12
[2022-02-08 01:17:04	                main:482]	:	INFO	:	    # Recurrent Layers: 4
[2022-02-08 01:17:04	                main:483]	:	INFO	:	    # Backend Layers: 4
[2022-02-08 01:17:04	                main:484]	:	INFO	:	    # Threads: 1
[2022-02-08 01:17:04	                main:486]	:	INFO	:	Preparing Dataset
[2022-02-08 01:17:04	load_hdf5_ds_into_tensor:28]	:	INFO	:	Loading Dataset /Xt from dataset.hdf5 into memory
[2022-02-08 01:17:22	load_hdf5_ds_into_tensor:28]	:	INFO	:	Loading Dataset /Yt from dataset.hdf5 into memory
[2022-02-08 01:18:34	                load:106]	:	INFO	:	Successfully loaded dataset of 2048 examples into memory.
[2022-02-08 01:18:35	load_hdf5_ds_into_tensor:28]	:	INFO	:	Loading Dataset /Xv from dataset.hdf5 into memory
[2022-02-08 01:18:37	load_hdf5_ds_into_tensor:28]	:	INFO	:	Loading Dataset /Yv from dataset.hdf5 into memory
[2022-02-08 01:18:40	                load:106]	:	INFO	:	Successfully loaded dataset of 512 examples into memory.
[2022-02-08 01:18:41	                main:494]	:	INFO	:	Creating Model
[2022-02-08 01:18:41	                main:507]	:	INFO	:	Preparing config file
[2022-02-08 01:18:42	                main:511]	:	INFO	:	Found checkpoint, attempting to load... 
[2022-02-08 01:18:42	                main:512]	:	INFO	:	Loading config
[2022-02-08 01:18:42	                main:514]	:	INFO	:	Loading state
[2022-02-08 01:19:48	                main:559]	:	INFO	:	Loading DataLoader into Memory
[2022-02-08 01:19:49	                main:562]	:	INFO	:	Starting Training
[2022-02-08 01:20:41	                main:574]	:	INFO	:	Epoch 1833 | loss: 0.0311462 | val_loss: 0.0311794 | Time: 52258.8 ms
[2022-02-08 01:21:49	                main:574]	:	INFO	:	Epoch 1834 | loss: 0.0311184 | val_loss: 0.0311806 | Time: 66449.9 ms
Machine Learning Dataset Generator v9.75 (Windows/x64) (libTorch: release/1.6 GPU: NVIDIA GeForce GTX 950M)
[2022-02-08 01:28:41	                main:435]	:	INFO	:	Set logging level to 1
[2022-02-08 01:28:41	                main:441]	:	INFO	:	Running in BOINC Client mode
[2022-02-08 01:28:41	                main:444]	:	INFO	:	Resolving all filenames
[2022-02-08 01:28:41	                main:452]	:	INFO	:	Resolved: dataset.hdf5 => dataset.hdf5 (exists = 1)
[2022-02-08 01:28:41	                main:452]	:	INFO	:	Resolved: model.cfg => model.cfg (exists = 1)
[2022-02-08 01:28:41	                main:452]	:	INFO	:	Resolved: model-final.pt => model-final.pt (exists = 0)
[2022-02-08 01:28:41	                main:452]	:	INFO	:	Resolved: model-input.pt => model-input.pt (exists = 1)
[2022-02-08 01:28:41	                main:452]	:	INFO	:	Resolved: snapshot.pt => snapshot.pt (exists = 1)
[2022-02-08 01:28:42	                main:472]	:	INFO	:	Dataset filename: dataset.hdf5
[2022-02-08 01:28:43	                main:474]	:	INFO	:	Configuration: 
[2022-02-08 01:28:44	                main:475]	:	INFO	:	    Model type: GRU
[2022-02-08 01:28:44	                main:476]	:	INFO	:	    Validation Loss Threshold: 0.0001
[2022-02-08 01:28:44	                main:477]	:	INFO	:	    Max Epochs: 2048
[2022-02-08 01:28:47	                main:478]	:	INFO	:	    Batch Size: 128
[2022-02-08 01:28:58	                main:479]	:	INFO	:	    Learning Rate: 0.01
[2022-02-08 01:28:58	                main:480]	:	INFO	:	    Patience: 10
[2022-02-08 01:28:58	                main:481]	:	INFO	:	    Hidden Width: 12
[2022-02-08 01:28:58	                main:482]	:	INFO	:	    # Recurrent Layers: 4
[2022-02-08 01:28:58	                main:483]	:	INFO	:	    # Backend Layers: 4
[2022-02-08 01:28:58	                main:484]	:	INFO	:	    # Threads: 1
[2022-02-08 01:28:59	                main:486]	:	INFO	:	Preparing Dataset
[2022-02-08 01:28:59	load_hdf5_ds_into_tensor:28]	:	INFO	:	Loading Dataset /Xt from dataset.hdf5 into memory
[2022-02-08 01:29:54	load_hdf5_ds_into_tensor:28]	:	INFO	:	Loading Dataset /Yt from dataset.hdf5 into memory
Machine Learning Dataset Generator v9.75 (Windows/x64) (libTorch: release/1.6 GPU: NVIDIA GeForce GTX 950M)
[2022-02-08 01:51:10	                main:435]	:	INFO	:	Set logging level to 1
[2022-02-08 01:51:15	                main:441]	:	INFO	:	Running in BOINC Client mode
[2022-02-08 01:51:15	                main:444]	:	INFO	:	Resolving all filenames
[2022-02-08 01:51:15	                main:452]	:	INFO	:	Resolved: dataset.hdf5 => dataset.hdf5 (exists = 1)
[2022-02-08 01:51:15	                main:452]	:	INFO	:	Resolved: model.cfg => model.cfg (exists = 1)
[2022-02-08 01:51:19	                main:452]	:	INFO	:	Resolved: model-final.pt => model-final.pt (exists = 0)
[2022-02-08 01:51:23	                main:452]	:	INFO	:	Resolved: model-input.pt => model-input.pt (exists = 1)
[2022-02-08 01:51:28	                main:452]	:	INFO	:	Resolved: snapshot.pt => snapshot.pt (exists = 1)
[2022-02-08 01:51:32	                main:472]	:	INFO	:	Dataset filename: dataset.hdf5
[2022-02-08 01:51:39	                main:474]	:	INFO	:	Configuration: 
[2022-02-08 01:51:39	                main:475]	:	INFO	:	    Model type: GRU
[2022-02-08 01:51:39	                main:476]	:	INFO	:	    Validation Loss Threshold: 0.0001
[2022-02-08 01:51:40	                main:477]	:	INFO	:	    Max Epochs: 2048
[2022-02-08 01:51:45	                main:478]	:	INFO	:	    Batch Size: 128
[2022-02-08 01:51:55	                main:479]	:	INFO	:	    Learning Rate: 0.01
[2022-02-08 01:51:55	                main:480]	:	INFO	:	    Patience: 10
[2022-02-08 01:51:56	                main:481]	:	INFO	:	    Hidden Width: 12
[2022-02-08 01:51:56	                main:482]	:	INFO	:	    # Recurrent Layers: 4
[2022-02-08 01:51:56	                main:483]	:	INFO	:	    # Backend Layers: 4
[2022-02-08 01:51:57	                main:484]	:	INFO	:	    # Threads: 1
[2022-02-08 01:51:57	                main:486]	:	INFO	:	Preparing Dataset
[2022-02-08 01:51:57	load_hdf5_ds_into_tensor:28]	:	INFO	:	Loading Dataset /Xt from dataset.hdf5 into memory
[2022-02-08 01:52:31	load_hdf5_ds_into_tensor:28]	:	INFO	:	Loading Dataset /Yt from dataset.hdf5 into memory
[2022-02-08 02:00:11	                load:106]	:	INFO	:	Successfully loaded dataset of 2048 examples into memory.
[2022-02-08 02:00:11	load_hdf5_ds_into_tensor:28]	:	INFO	:	Loading Dataset /Xv from dataset.hdf5 into memory
[2022-02-08 02:00:21	load_hdf5_ds_into_tensor:28]	:	INFO	:	Loading Dataset /Yv from dataset.hdf5 into memory
[2022-02-08 02:00:53	                load:106]	:	INFO	:	Successfully loaded dataset of 512 examples into memory.
[2022-02-08 02:00:53	                main:494]	:	INFO	:	Creating Model
[2022-02-08 02:00:53	                main:507]	:	INFO	:	Preparing config file
[2022-02-08 02:00:54	                main:511]	:	INFO	:	Found checkpoint, attempting to load... 
[2022-02-08 02:00:54	                main:512]	:	INFO	:	Loading config
[2022-02-08 02:00:54	                main:514]	:	INFO	:	Loading state
[2022-02-08 02:04:47	                main:559]	:	INFO	:	Loading DataLoader into Memory
[2022-02-08 02:04:59	                main:562]	:	INFO	:	Starting Training
[2022-02-08 02:06:53	                main:574]	:	INFO	:	Epoch 1834 | loss: 0.0311562 | val_loss: 0.0311838 | Time: 108530 ms
[2022-02-08 02:08:51	                main:574]	:	INFO	:	Epoch 1835 | loss: 0.0311251 | val_loss: 0.0311796 | Time: 114281 ms
[2022-02-08 02:10:14	                main:574]	:	INFO	:	Epoch 1836 | loss: 0.0311181 | val_loss: 0.0311765 | Time: 83264.4 ms
[2022-02-08 02:11:45	                main:574]	:	INFO	:	Epoch 1837 | loss: 0.0311148 | val_loss: 0.0311735 | Time: 89701 ms
[2022-02-08 02:13:10	                main:574]	:	INFO	:	Epoch 1838 | loss: 0.0311152 | val_loss: 0.0311737 | Time: 84830.7 ms
[2022-02-08 02:14:44	                main:574]	:	INFO	:	Epoch 1839 | loss: 0.0311144 | val_loss: 0.0311766 | Time: 93967.2 ms
[2022-02-08 02:16:30	                main:574]	:	INFO	:	Epoch 1840 | loss: 0.0311094 | val_loss: 0.0311723 | Time: 105599 ms
[2022-02-08 02:18:05	                main:574]	:	INFO	:	Epoch 1841 | loss: 0.0311096 | val_loss: 0.0311769 | Time: 93280.7 ms
[2022-02-08 02:19:41	                main:574]	:	INFO	:	Epoch 1842 | loss: 0.0311105 | val_loss: 0.0311798 | Time: 96113.3 ms
[2022-02-08 02:21:10	                main:574]	:	INFO	:	Epoch 1843 | loss: 0.0311108 | val_loss: 0.0311768 | Time: 88768.6 ms
[2022-02-08 02:23:21	                main:574]	:	INFO	:	Epoch 1844 | loss: 0.0311114 | val_loss: 0.0311761 | Time: 115226 ms
[2022-02-08 02:25:28	                main:574]	:	INFO	:	Epoch 1845 | loss: 0.0311139 | val_loss: 0.0311791 | Time: 127227 ms
[2022-02-08 02:27:27	                main:574]	:	INFO	:	Epoch 1846 | loss: 0.0311189 | val_loss: 0.031174 | Time: 118513 ms
[2022-02-08 02:29:02	                main:574]	:	INFO	:	Epoch 1847 | loss: 0.031116 | val_loss: 0.0311769 | Time: 95625.9 ms
[2022-02-08 02:30:39	                main:574]	:	INFO	:	Epoch 1848 | loss: 0.0311146 | val_loss: 0.0311727 | Time: 93734.8 ms
[2022-02-08 02:32:38	                main:574]	:	INFO	:	Epoch 1849 | loss: 0.0311118 | val_loss: 0.0311772 | Time: 118653 ms
[2022-02-08 02:34:22	                main:574]	:	INFO	:	Epoch 1850 | loss: 0.0311108 | val_loss: 0.0311744 | Time: 103330 ms
[2022-02-08 02:36:13	                main:574]	:	INFO	:	Epoch 1851 | loss: 0.0311106 | val_loss: 0.0311767 | Time: 110408 ms
[2022-02-08 02:38:15	                main:574]	:	INFO	:	Epoch 1852 | loss: 0.031109 | val_loss: 0.0311757 | Time: 117288 ms
[2022-02-08 02:39:52	                main:574]	:	INFO	:	Epoch 1853 | loss: 0.0311085 | val_loss: 0.031176 | Time: 97166.5 ms
[2022-02-08 02:41:50	                main:574]	:	INFO	:	Epoch 1854 | loss: 0.0311091 | val_loss: 0.0311929 | Time: 109253 ms
[2022-02-08 02:43:12	                main:574]	:	INFO	:	Epoch 1855 | loss: 0.031119 | val_loss: 0.0311747 | Time: 81586.8 ms
[2022-02-08 02:44:58	                main:574]	:	INFO	:	Epoch 1856 | loss: 0.0311218 | val_loss: 0.0311753 | Time: 105357 ms
[2022-02-08 02:47:03	                main:574]	:	INFO	:	Epoch 1857 | loss: 0.031117 | val_loss: 0.0311769 | Time: 124194 ms
[2022-02-08 02:49:05	                main:574]	:	INFO	:	Epoch 1858 | loss: 0.0311129 | val_loss: 0.0311819 | Time: 122147 ms
[2022-02-08 02:50:49	                main:574]	:	INFO	:	Epoch 1859 | loss: 0.031109 | val_loss: 0.0311736 | Time: 103825 ms
[2022-02-08 02:52:35	                main:574]	:	INFO	:	Epoch 1860 | loss: 0.0311083 | val_loss: 0.0311814 | Time: 105443 ms
[2022-02-08 02:54:27	                main:574]	:	INFO	:	Epoch 1861 | loss: 0.0311122 | val_loss: 0.0311772 | Time: 106696 ms
[2022-02-08 02:56:07	                main:574]	:	INFO	:	Epoch 1862 | loss: 0.0311096 | val_loss: 0.0311772 | Time: 98264.5 ms
[2022-02-08 02:56:48	                main:574]	:	INFO	:	Epoch 1863 | loss: 0.0311107 | val_loss: 0.031173 | Time: 41605.7 ms
[2022-02-08 02:58:32	                main:574]	:	INFO	:	Epoch 1864 | loss: 0.0311112 | val_loss: 0.0311866 | Time: 103734 ms
[2022-02-08 03:00:06	                main:574]	:	INFO	:	Epoch 1865 | loss: 0.0311113 | val_loss: 0.031172 | Time: 93164.2 ms
[2022-02-08 03:01:28	                main:574]	:	INFO	:	Epoch 1866 | loss: 0.031109 | val_loss: 0.0311802 | Time: 79357.9 ms
[2022-02-08 03:02:56	                main:574]	:	INFO	:	Epoch 1867 | loss: 0.0311106 | val_loss: 0.0311764 | Time: 87107.4 ms
[2022-02-08 03:04:31	                main:574]	:	INFO	:	Epoch 1868 | loss: 0.0311091 | val_loss: 0.0311858 | Time: 94814.2 ms
[2022-02-08 03:05:59	                main:574]	:	INFO	:	Epoch 1869 | loss: 0.0311088 | val_loss: 0.0311835 | Time: 87701.6 ms
[2022-02-08 03:09:35	                main:574]	:	INFO	:	Epoch 1870 | loss: 0.0311085 | val_loss: 0.0311774 | Time: 215386 ms
[2022-02-08 03:13:34	                main:574]	:	INFO	:	Epoch 1871 | loss: 0.0311091 | val_loss: 0.0311793 | Time: 225870 ms
[2022-02-08 03:16:56	                main:574]	:	INFO	:	Epoch 1872 | loss: 0.0311109 | val_loss: 0.0311739 | Time: 195226 ms
[2022-02-08 03:20:53	                main:574]	:	INFO	:	Epoch 1873 | loss: 0.0311077 | val_loss: 0.031174 | Time: 236450 ms
[2022-02-08 03:23:48	                main:574]	:	INFO	:	Epoch 1874 | loss: 0.0311087 | val_loss: 0.0311819 | Time: 175254 ms
[2022-02-08 03:26:42	                main:574]	:	INFO	:	Epoch 1875 | loss: 0.0311063 | val_loss: 0.0311746 | Time: 171716 ms
[2022-02-08 03:28:56	                main:574]	:	INFO	:	Epoch 1876 | loss: 0.0311069 | val_loss: 0.0311836 | Time: 123698 ms
[2022-02-08 03:31:13	                main:574]	:	INFO	:	Epoch 1877 | loss: 0.0311066 | val_loss: 0.0311812 | Time: 137274 ms
[2022-02-08 03:34:01	                main:574]	:	INFO	:	Epoch 1878 | loss: 0.0311065 | val_loss: 0.0311892 | Time: 148479 ms
[2022-02-08 03:38:23	                main:574]	:	INFO	:	Epoch 1879 | loss: 0.0311069 | val_loss: 0.0311781 | Time: 260462 ms
[2022-02-08 03:41:01	                main:574]	:	INFO	:	Epoch 1880 | loss: 0.0311045 | val_loss: 0.0311806 | Time: 151333 ms
[2022-02-08 03:43:26	                main:574]	:	INFO	:	Epoch 1881 | loss: 0.0311039 | val_loss: 0.0311787 | Time: 144426 ms
[2022-02-08 03:46:04	                main:574]	:	INFO	:	Epoch 1882 | loss: 0.0311047 | val_loss: 0.0311817 | Time: 149939 ms
[2022-02-08 03:49:25	                main:574]	:	INFO	:	Epoch 1883 | loss: 0.0311073 | val_loss: 0.0311761 | Time: 201490 ms
[2022-02-08 03:53:09	                main:574]	:	INFO	:	Epoch 1884 | loss: 0.0311236 | val_loss: 0.0311644 | Time: 209703 ms
[2022-02-08 03:56:47	                main:574]	:	INFO	:	Epoch 1885 | loss: 0.0311208 | val_loss: 0.0311668 | Time: 189709 ms
[2022-02-08 04:03:15	                main:574]	:	INFO	:	Epoch 1886 | loss: 0.0311162 | val_loss: 0.0311771 | Time: 382039 ms
[2022-02-08 04:06:41	                main:574]	:	INFO	:	Epoch 1887 | loss: 0.0311138 | val_loss: 0.0311714 | Time: 188093 ms
[2022-02-08 04:08:16	                main:574]	:	INFO	:	Epoch 1888 | loss: 0.0311132 | val_loss: 0.0311688 | Time: 94432 ms
[2022-02-08 04:10:03	                main:574]	:	INFO	:	Epoch 1889 | loss: 0.0311146 | val_loss: 0.0311748 | Time: 99210.6 ms
[2022-02-08 04:11:29	                main:574]	:	INFO	:	Epoch 1890 | loss: 0.0311131 | val_loss: 0.0311767 | Time: 85638.3 ms
[2022-02-08 04:12:49	                main:574]	:	INFO	:	Epoch 1891 | loss: 0.0311112 | val_loss: 0.0311724 | Time: 79058.6 ms
[2022-02-08 04:14:31	                main:574]	:	INFO	:	Epoch 1892 | loss: 0.0311112 | val_loss: 0.0311741 | Time: 96903.4 ms
[2022-02-08 04:15:59	                main:574]	:	INFO	:	Epoch 1893 | loss: 0.0311107 | val_loss: 0.0311756 | Time: 88311.2 ms
[2022-02-08 04:17:30	                main:574]	:	INFO	:	Epoch 1894 | loss: 0.0311111 | val_loss: 0.0311733 | Time: 90975.3 ms
[2022-02-08 04:18:56	                main:574]	:	INFO	:	Epoch 1895 | loss: 0.031114 | val_loss: 0.0311765 | Time: 82083.1 ms
[2022-02-08 04:20:19	                main:574]	:	INFO	:	Epoch 1896 | loss: 0.0311154 | val_loss: 0.0311764 | Time: 82682.9 ms
[2022-02-08 04:21:47	                main:574]	:	INFO	:	Epoch 1897 | loss: 0.0311152 | val_loss: 0.0311741 | Time: 87426.5 ms
[2022-02-08 04:23:06	                main:574]	:	INFO	:	Epoch 1898 | loss: 0.0311162 | val_loss: 0.0311644 | Time: 73233.1 ms
[2022-02-08 04:25:18	                main:574]	:	INFO	:	Epoch 1899 | loss: 0.0311145 | val_loss: 0.0311748 | Time: 131097 ms
[2022-02-08 04:27:04	                main:574]	:	INFO	:	Epoch 1900 | loss: 0.0311119 | val_loss: 0.0311802 | Time: 99231.7 ms
[2022-02-08 04:28:37	                main:574]	:	INFO	:	Epoch 1901 | loss: 0.031115 | val_loss: 0.031176 | Time: 91809.4 ms
[2022-02-08 04:30:09	                main:574]	:	INFO	:	Epoch 1902 | loss: 0.0311283 | val_loss: 0.0311674 | Time: 90424.5 ms
[2022-02-08 04:31:23	                main:574]	:	INFO	:	Epoch 1903 | loss: 0.0311246 | val_loss: 0.0311749 | Time: 70920.3 ms
[2022-02-08 04:32:35	                main:574]	:	INFO	:	Epoch 1904 | loss: 0.0311335 | val_loss: 0.0311609 | Time: 72127.8 ms
[2022-02-08 04:33:57	                main:574]	:	INFO	:	Epoch 1905 | loss: 0.0311398 | val_loss: 0.0311629 | Time: 81278.7 ms
[2022-02-08 04:35:37	                main:574]	:	INFO	:	Epoch 1906 | loss: 0.0311373 | val_loss: 0.0311653 | Time: 99896.3 ms
[2022-02-08 04:36:40	                main:574]	:	INFO	:	Epoch 1907 | loss: 0.0311379 | val_loss: 0.0311637 | Time: 62487.6 ms
[2022-02-08 04:38:04	                main:574]	:	INFO	:	Epoch 1908 | loss: 0.031136 | val_loss: 0.0311622 | Time: 84522.2 ms
[2022-02-08 04:39:40	                main:574]	:	INFO	:	Epoch 1909 | loss: 0.0311311 | val_loss: 0.031165 | Time: 91579.8 ms
[2022-02-08 04:41:08	                main:574]	:	INFO	:	Epoch 1910 | loss: 0.0311302 | val_loss: 0.0311684 | Time: 88059.3 ms
[2022-02-08 04:42:30	                main:574]	:	INFO	:	Epoch 1911 | loss: 0.0311288 | val_loss: 0.0311775 | Time: 81736.3 ms
[2022-02-08 04:43:55	                main:574]	:	INFO	:	Epoch 1912 | loss: 0.0311282 | val_loss: 0.0311689 | Time: 81759.8 ms
[2022-02-08 04:45:07	                main:574]	:	INFO	:	Epoch 1913 | loss: 0.0311266 | val_loss: 0.0311692 | Time: 71894.5 ms
[2022-02-08 04:46:48	                main:574]	:	INFO	:	Epoch 1914 | loss: 0.0311277 | val_loss: 0.0311647 | Time: 100763 ms
[2022-02-08 04:48:22	                main:574]	:	INFO	:	Epoch 1915 | loss: 0.0311251 | val_loss: 0.0311631 | Time: 89848.4 ms
[2022-02-08 04:49:43	                main:574]	:	INFO	:	Epoch 1916 | loss: 0.0311234 | val_loss: 0.0311641 | Time: 80364.6 ms
[2022-02-08 04:51:21	                main:574]	:	INFO	:	Epoch 1917 | loss: 0.031122 | val_loss: 0.0311678 | Time: 97949.5 ms
[2022-02-08 04:52:51	                main:574]	:	INFO	:	Epoch 1918 | loss: 0.031121 | val_loss: 0.0311654 | Time: 86819 ms
[2022-02-08 04:54:30	                main:574]	:	INFO	:	Epoch 1919 | loss: 0.0311201 | val_loss: 0.0311608 | Time: 97814.8 ms
[2022-02-08 04:55:50	                main:574]	:	INFO	:	Epoch 1920 | loss: 0.0311191 | val_loss: 0.0311693 | Time: 79696 ms
[2022-02-08 04:57:28	                main:574]	:	INFO	:	Epoch 1921 | loss: 0.0311227 | val_loss: 0.03117 | Time: 93633.9 ms
[2022-02-08 04:58:45	                main:574]	:	INFO	:	Epoch 1922 | loss: 0.0311501 | val_loss: 0.0311701 | Time: 77109.1 ms
[2022-02-08 05:00:11	                main:574]	:	INFO	:	Epoch 1923 | loss: 0.0311601 | val_loss: 0.0311646 | Time: 86129.7 ms
[2022-02-08 05:01:30	                main:574]	:	INFO	:	Epoch 1924 | loss: 0.0311528 | val_loss: 0.0311624 | Time: 78013.9 ms
[2022-02-08 05:02:47	                main:574]	:	INFO	:	Epoch 1925 | loss: 0.0311484 | val_loss: 0.031159 | Time: 77281.1 ms
[2022-02-08 05:04:15	                main:574]	:	INFO	:	Epoch 1926 | loss: 0.0311478 | val_loss: 0.03116 | Time: 87417.3 ms
[2022-02-08 05:06:03	                main:574]	:	INFO	:	Epoch 1927 | loss: 0.0311448 | val_loss: 0.0311591 | Time: 99785.1 ms
[2022-02-08 05:09:10	                main:574]	:	INFO	:	Epoch 1928 | loss: 0.0311442 | val_loss: 0.0311578 | Time: 186354 ms
[2022-02-08 05:13:50	                main:574]	:	INFO	:	Epoch 1929 | loss: 0.0311422 | val_loss: 0.0311624 | Time: 272488 ms
[2022-02-08 05:17:59	                main:574]	:	INFO	:	Epoch 1930 | loss: 0.0311405 | val_loss: 0.0311633 | Time: 231148 ms
[2022-02-08 05:21:48	                main:574]	:	INFO	:	Epoch 1931 | loss: 0.0311383 | val_loss: 0.0311606 | Time: 224811 ms
[2022-02-08 05:25:26	                main:574]	:	INFO	:	Epoch 1932 | loss: 0.0311373 | val_loss: 0.0311605 | Time: 210653 ms
[2022-02-08 05:28:16	                main:574]	:	INFO	:	Epoch 1933 | loss: 0.0311374 | val_loss: 0.0311653 | Time: 162457 ms
[2022-02-08 05:32:07	                main:574]	:	INFO	:	Epoch 1934 | loss: 0.0311363 | val_loss: 0.0311605 | Time: 230170 ms
[2022-02-08 05:37:12	                main:574]	:	INFO	:	Epoch 1935 | loss: 0.0311358 | val_loss: 0.0311625 | Time: 283679 ms
[2022-02-08 05:41:39	                main:574]	:	INFO	:	Epoch 1936 | loss: 0.0311368 | val_loss: 0.0311651 | Time: 254347 ms
[2022-02-08 05:45:10	                main:574]	:	INFO	:	Epoch 1937 | loss: 0.0311336 | val_loss: 0.0311633 | Time: 199955 ms
[2022-02-08 05:49:12	                main:574]	:	INFO	:	Epoch 1938 | loss: 0.0311339 | val_loss: 0.0311626 | Time: 241839 ms
[2022-02-08 05:54:28	                main:574]	:	INFO	:	Epoch 1939 | loss: 0.0311319 | val_loss: 0.0311637 | Time: 292515 ms
[2022-02-08 05:59:07	                main:574]	:	INFO	:	Epoch 1940 | loss: 0.0311339 | val_loss: 0.0311664 | Time: 237133 ms
[2022-02-08 06:02:55	                main:574]	:	INFO	:	Epoch 1941 | loss: 0.0311318 | val_loss: 0.0311648 | Time: 208557 ms
[2022-02-08 06:06:38	                main:574]	:	INFO	:	Epoch 1942 | loss: 0.03113 | val_loss: 0.0311662 | Time: 217295 ms
[2022-02-08 06:08:17	                main:574]	:	INFO	:	Epoch 1943 | loss: 0.0311276 | val_loss: 0.031169 | Time: 98533.1 ms
[2022-02-08 06:10:11	                main:574]	:	INFO	:	Epoch 1944 | loss: 0.0311284 | val_loss: 0.0311707 | Time: 114201 ms
[2022-02-08 06:12:02	                main:574]	:	INFO	:	Epoch 1945 | loss: 0.0311283 | val_loss: 0.0311669 | Time: 100116 ms
[2022-02-08 06:13:26	                main:574]	:	INFO	:	Epoch 1946 | loss: 0.0311266 | val_loss: 0.0311714 | Time: 83723.2 ms
[2022-02-08 06:15:03	                main:574]	:	INFO	:	Epoch 1947 | loss: 0.031125 | val_loss: 0.0311722 | Time: 96136.4 ms
[2022-02-08 06:16:12	                main:574]	:	INFO	:	Epoch 1948 | loss: 0.0311264 | val_loss: 0.0311676 | Time: 64775.6 ms
[2022-02-08 06:17:38	                main:574]	:	INFO	:	Epoch 1949 | loss: 0.0311295 | val_loss: 0.0311701 | Time: 84968.9 ms
[2022-02-08 06:19:10	                main:574]	:	INFO	:	Epoch 1950 | loss: 0.0311287 | val_loss: 0.0311675 | Time: 92197.7 ms
[2022-02-08 06:20:31	                main:574]	:	INFO	:	Epoch 1951 | loss: 0.0311261 | val_loss: 0.0311677 | Time: 79199.1 ms
Machine Learning Dataset Generator v9.75 (Windows/x64) (libTorch: release/1.6 GPU: NVIDIA GeForce GTX 950M)
[2022-02-09 00:03:38	                main:435]	:	INFO	:	Set logging level to 1
[2022-02-09 00:03:39	                main:441]	:	INFO	:	Running in BOINC Client mode
[2022-02-09 00:03:39	                main:444]	:	INFO	:	Resolving all filenames
[2022-02-09 00:03:39	                main:452]	:	INFO	:	Resolved: dataset.hdf5 => dataset.hdf5 (exists = 1)
[2022-02-09 00:03:39	                main:452]	:	INFO	:	Resolved: model.cfg => model.cfg (exists = 1)
[2022-02-09 00:03:39	                main:452]	:	INFO	:	Resolved: model-final.pt => model-final.pt (exists = 0)
[2022-02-09 00:03:39	                main:452]	:	INFO	:	Resolved: model-input.pt => model-input.pt (exists = 1)
[2022-02-09 00:03:39	                main:452]	:	INFO	:	Resolved: snapshot.pt => snapshot.pt (exists = 1)
[2022-02-09 00:03:39	                main:472]	:	INFO	:	Dataset filename: dataset.hdf5
[2022-02-09 00:03:39	                main:474]	:	INFO	:	Configuration: 
[2022-02-09 00:03:39	                main:475]	:	INFO	:	    Model type: GRU
[2022-02-09 00:03:40	                main:476]	:	INFO	:	    Validation Loss Threshold: 0.0001
[2022-02-09 00:03:40	                main:477]	:	INFO	:	    Max Epochs: 2048
[2022-02-09 00:03:40	                main:478]	:	INFO	:	    Batch Size: 128
[2022-02-09 00:03:40	                main:479]	:	INFO	:	    Learning Rate: 0.01
[2022-02-09 00:03:40	                main:480]	:	INFO	:	    Patience: 10
[2022-02-09 00:03:40	                main:481]	:	INFO	:	    Hidden Width: 12
[2022-02-09 00:03:40	                main:482]	:	INFO	:	    # Recurrent Layers: 4
[2022-02-09 00:03:40	                main:483]	:	INFO	:	    # Backend Layers: 4
[2022-02-09 00:03:40	                main:484]	:	INFO	:	    # Threads: 1
[2022-02-09 00:03:41	                main:486]	:	INFO	:	Preparing Dataset
[2022-02-09 00:03:41	load_hdf5_ds_into_tensor:28]	:	INFO	:	Loading Dataset /Xt from dataset.hdf5 into memory
[2022-02-09 00:03:46	load_hdf5_ds_into_tensor:28]	:	INFO	:	Loading Dataset /Yt from dataset.hdf5 into memory
[2022-02-09 00:08:02	                load:106]	:	INFO	:	Successfully loaded dataset of 2048 examples into memory.
[2022-02-09 00:08:02	load_hdf5_ds_into_tensor:28]	:	INFO	:	Loading Dataset /Xv from dataset.hdf5 into memory
[2022-02-09 00:08:05	load_hdf5_ds_into_tensor:28]	:	INFO	:	Loading Dataset /Yv from dataset.hdf5 into memory
[2022-02-09 00:08:14	                load:106]	:	INFO	:	Successfully loaded dataset of 512 examples into memory.
[2022-02-09 00:08:15	                main:494]	:	INFO	:	Creating Model
[2022-02-09 00:08:15	                main:507]	:	INFO	:	Preparing config file
[2022-02-09 00:08:15	                main:511]	:	INFO	:	Found checkpoint, attempting to load... 
[2022-02-09 00:08:15	                main:512]	:	INFO	:	Loading config
[2022-02-09 00:08:15	                main:514]	:	INFO	:	Loading state
[2022-02-09 00:10:58	                main:559]	:	INFO	:	Loading DataLoader into Memory
[2022-02-09 00:11:00	                main:562]	:	INFO	:	Starting Training
Machine Learning Dataset Generator v9.75 (Windows/x64) (libTorch: release/1.6 GPU: NVIDIA GeForce GTX 950M)
[2022-02-09 00:21:47	                main:435]	:	INFO	:	Set logging level to 1
[2022-02-09 00:21:47	                main:441]	:	INFO	:	Running in BOINC Client mode
[2022-02-09 00:21:47	                main:444]	:	INFO	:	Resolving all filenames
[2022-02-09 00:21:48	                main:452]	:	INFO	:	Resolved: dataset.hdf5 => dataset.hdf5 (exists = 1)
[2022-02-09 00:21:49	                main:452]	:	INFO	:	Resolved: model.cfg => model.cfg (exists = 1)
[2022-02-09 00:21:49	                main:452]	:	INFO	:	Resolved: model-final.pt => model-final.pt (exists = 0)
[2022-02-09 00:21:49	                main:452]	:	INFO	:	Resolved: model-input.pt => model-input.pt (exists = 1)
[2022-02-09 00:21:49	                main:452]	:	INFO	:	Resolved: snapshot.pt => snapshot.pt (exists = 1)
[2022-02-09 00:21:49	                main:472]	:	INFO	:	Dataset filename: dataset.hdf5
[2022-02-09 00:21:50	                main:474]	:	INFO	:	Configuration: 
[2022-02-09 00:21:50	                main:475]	:	INFO	:	    Model type: GRU
[2022-02-09 00:21:50	                main:476]	:	INFO	:	    Validation Loss Threshold: 0.0001
[2022-02-09 00:21:50	                main:477]	:	INFO	:	    Max Epochs: 2048
[2022-02-09 00:21:50	                main:478]	:	INFO	:	    Batch Size: 128
[2022-02-09 00:21:50	                main:479]	:	INFO	:	    Learning Rate: 0.01
[2022-02-09 00:21:51	                main:480]	:	INFO	:	    Patience: 10
[2022-02-09 00:21:51	                main:481]	:	INFO	:	    Hidden Width: 12
[2022-02-09 00:21:51	                main:482]	:	INFO	:	    # Recurrent Layers: 4
[2022-02-09 00:21:51	                main:483]	:	INFO	:	    # Backend Layers: 4
[2022-02-09 00:21:51	                main:484]	:	INFO	:	    # Threads: 1
[2022-02-09 00:21:51	                main:486]	:	INFO	:	Preparing Dataset
[2022-02-09 00:21:51	load_hdf5_ds_into_tensor:28]	:	INFO	:	Loading Dataset /Xt from dataset.hdf5 into memory
[2022-02-09 00:21:58	load_hdf5_ds_into_tensor:28]	:	INFO	:	Loading Dataset /Yt from dataset.hdf5 into memory
Machine Learning Dataset Generator v9.75 (Windows/x64) (libTorch: release/1.6 GPU: NVIDIA GeForce GTX 950M)
[2022-02-09 01:09:54	                main:435]	:	INFO	:	Set logging level to 1
[2022-02-09 01:09:54	                main:441]	:	INFO	:	Running in BOINC Client mode
[2022-02-09 01:09:54	                main:444]	:	INFO	:	Resolving all filenames
[2022-02-09 01:09:54	                main:452]	:	INFO	:	Resolved: dataset.hdf5 => dataset.hdf5 (exists = 1)
[2022-02-09 01:09:54	                main:452]	:	INFO	:	Resolved: model.cfg => model.cfg (exists = 1)
[2022-02-09 01:09:54	                main:452]	:	INFO	:	Resolved: model-final.pt => model-final.pt (exists = 0)
[2022-02-09 01:09:55	                main:452]	:	INFO	:	Resolved: model-input.pt => model-input.pt (exists = 1)
[2022-02-09 01:09:55	                main:452]	:	INFO	:	Resolved: snapshot.pt => snapshot.pt (exists = 1)
[2022-02-09 01:09:55	                main:472]	:	INFO	:	Dataset filename: dataset.hdf5
[2022-02-09 01:09:56	                main:474]	:	INFO	:	Configuration: 
[2022-02-09 01:09:56	                main:475]	:	INFO	:	    Model type: GRU
[2022-02-09 01:09:56	                main:476]	:	INFO	:	    Validation Loss Threshold: 0.0001
[2022-02-09 01:09:56	                main:477]	:	INFO	:	    Max Epochs: 2048
[2022-02-09 01:09:58	                main:478]	:	INFO	:	    Batch Size: 128
[2022-02-09 01:09:59	                main:479]	:	INFO	:	    Learning Rate: 0.01
[2022-02-09 01:09:59	                main:480]	:	INFO	:	    Patience: 10
[2022-02-09 01:10:00	                main:481]	:	INFO	:	    Hidden Width: 12
[2022-02-09 01:10:00	                main:482]	:	INFO	:	    # Recurrent Layers: 4
[2022-02-09 01:10:00	                main:483]	:	INFO	:	    # Backend Layers: 4
[2022-02-09 01:10:00	                main:484]	:	INFO	:	    # Threads: 1
[2022-02-09 01:10:00	                main:486]	:	INFO	:	Preparing Dataset
[2022-02-09 01:10:00	load_hdf5_ds_into_tensor:28]	:	INFO	:	Loading Dataset /Xt from dataset.hdf5 into memory
[2022-02-09 01:10:08	load_hdf5_ds_into_tensor:28]	:	INFO	:	Loading Dataset /Yt from dataset.hdf5 into memory
[2022-02-09 01:17:57	                load:106]	:	INFO	:	Successfully loaded dataset of 2048 examples into memory.
[2022-02-09 01:17:57	load_hdf5_ds_into_tensor:28]	:	INFO	:	Loading Dataset /Xv from dataset.hdf5 into memory
[2022-02-09 01:18:00	load_hdf5_ds_into_tensor:28]	:	INFO	:	Loading Dataset /Yv from dataset.hdf5 into memory
[2022-02-09 01:18:16	                load:106]	:	INFO	:	Successfully loaded dataset of 512 examples into memory.
[2022-02-09 01:18:17	                main:494]	:	INFO	:	Creating Model
[2022-02-09 01:18:20	                main:507]	:	INFO	:	Preparing config file
[2022-02-09 01:18:20	                main:511]	:	INFO	:	Found checkpoint, attempting to load... 
[2022-02-09 01:18:20	                main:512]	:	INFO	:	Loading config
[2022-02-09 01:18:20	                main:514]	:	INFO	:	Loading state
[2022-02-09 01:21:20	                main:559]	:	INFO	:	Loading DataLoader into Memory
[2022-02-09 01:21:25	                main:562]	:	INFO	:	Starting Training
[2022-02-09 01:24:27	                main:574]	:	INFO	:	Epoch 1951 | loss: 0.0311715 | val_loss: 0.0311657 | Time: 181795 ms
[2022-02-09 01:27:06	                main:574]	:	INFO	:	Epoch 1952 | loss: 0.0311376 | val_loss: 0.0311628 | Time: 151818 ms
[2022-02-09 01:29:40	                main:574]	:	INFO	:	Epoch 1953 | loss: 0.031132 | val_loss: 0.0311682 | Time: 153519 ms
[2022-02-09 01:31:10	                main:574]	:	INFO	:	Epoch 1954 | loss: 0.0311277 | val_loss: 0.0311647 | Time: 77120.6 ms
[2022-02-09 01:33:44	                main:574]	:	INFO	:	Epoch 1955 | loss: 0.031125 | val_loss: 0.031167 | Time: 153185 ms
[2022-02-09 01:35:33	                main:574]	:	INFO	:	Epoch 1956 | loss: 0.0311245 | val_loss: 0.0311652 | Time: 108783 ms
[2022-02-09 01:37:58	                main:574]	:	INFO	:	Epoch 1957 | loss: 0.0311258 | val_loss: 0.0311642 | Time: 145519 ms
[2022-02-09 01:40:35	                main:574]	:	INFO	:	Epoch 1958 | loss: 0.0311284 | val_loss: 0.0311679 | Time: 152170 ms
[2022-02-09 01:42:26	                main:574]	:	INFO	:	Epoch 1959 | loss: 0.0311277 | val_loss: 0.0311639 | Time: 110766 ms
[2022-02-09 01:44:38	                main:574]	:	INFO	:	Epoch 1960 | loss: 0.0311258 | val_loss: 0.0311664 | Time: 129196 ms
[2022-02-09 01:47:07	                main:574]	:	INFO	:	Epoch 1961 | loss: 0.0311246 | val_loss: 0.0311685 | Time: 146271 ms
[2022-02-09 01:49:14	                main:574]	:	INFO	:	Epoch 1962 | loss: 0.0311231 | val_loss: 0.031169 | Time: 122607 ms
[2022-02-09 01:50:56	                main:574]	:	INFO	:	Epoch 1963 | loss: 0.0311264 | val_loss: 0.0311722 | Time: 100784 ms
[2022-02-09 01:53:14	                main:574]	:	INFO	:	Epoch 1964 | loss: 0.0311248 | val_loss: 0.0311645 | Time: 131289 ms
[2022-02-09 01:54:59	                main:574]	:	INFO	:	Epoch 1965 | loss: 0.0311214 | val_loss: 0.0311656 | Time: 104812 ms
[2022-02-09 01:57:13	                main:574]	:	INFO	:	Epoch 1966 | loss: 0.0311229 | val_loss: 0.0311647 | Time: 125742 ms
[2022-02-09 01:58:51	                main:574]	:	INFO	:	Epoch 1967 | loss: 0.0311238 | val_loss: 0.031163 | Time: 98238.1 ms
[2022-02-09 02:01:13	                main:574]	:	INFO	:	Epoch 1968 | loss: 0.0311208 | val_loss: 0.0311682 | Time: 135760 ms
[2022-02-09 02:03:35	                main:574]	:	INFO	:	Epoch 1969 | loss: 0.0311234 | val_loss: 0.0311681 | Time: 141992 ms
[2022-02-09 02:05:46	                main:574]	:	INFO	:	Epoch 1970 | loss: 0.0311213 | val_loss: 0.0311639 | Time: 118606 ms
[2022-02-09 02:07:58	                main:574]	:	INFO	:	Epoch 1971 | loss: 0.03112 | val_loss: 0.0311719 | Time: 129925 ms
[2022-02-09 02:10:40	                main:574]	:	INFO	:	Epoch 1972 | loss: 0.0311191 | val_loss: 0.0311664 | Time: 153673 ms
[2022-02-09 02:12:55	                main:574]	:	INFO	:	Epoch 1973 | loss: 0.0311196 | val_loss: 0.0311681 | Time: 133886 ms
[2022-02-09 02:15:15	                main:574]	:	INFO	:	Epoch 1974 | loss: 0.0311244 | val_loss: 0.031166 | Time: 126256 ms
[2022-02-09 02:17:07	                main:574]	:	INFO	:	Epoch 1975 | loss: 0.0311214 | val_loss: 0.0311635 | Time: 112107 ms
[2022-02-09 02:19:12	                main:574]	:	INFO	:	Epoch 1976 | loss: 0.0311187 | val_loss: 0.031168 | Time: 124914 ms
[2022-02-09 02:21:15	                main:574]	:	INFO	:	Epoch 1977 | loss: 0.0311185 | val_loss: 0.0311631 | Time: 122042 ms
[2022-02-09 02:23:25	                main:574]	:	INFO	:	Epoch 1978 | loss: 0.0311253 | val_loss: 0.031163 | Time: 117406 ms
[2022-02-09 02:25:24	                main:574]	:	INFO	:	Epoch 1979 | loss: 0.0311249 | val_loss: 0.0311587 | Time: 118156 ms
[2022-02-09 02:27:31	                main:574]	:	INFO	:	Epoch 1980 | loss: 0.0311253 | val_loss: 0.0311637 | Time: 119487 ms
[2022-02-09 02:29:47	                main:574]	:	INFO	:	Epoch 1981 | loss: 0.0311228 | val_loss: 0.0311655 | Time: 134135 ms
[2022-02-09 02:32:23	                main:574]	:	INFO	:	Epoch 1982 | loss: 0.0311226 | val_loss: 0.0311622 | Time: 140351 ms
[2022-02-09 02:34:46	                main:574]	:	INFO	:	Epoch 1983 | loss: 0.0311243 | val_loss: 0.0311704 | Time: 127968 ms
[2022-02-09 02:38:00	                main:574]	:	INFO	:	Epoch 1984 | loss: 0.0311218 | val_loss: 0.0311598 | Time: 156402 ms
[2022-02-09 02:40:16	                main:574]	:	INFO	:	Epoch 1985 | loss: 0.0311226 | val_loss: 0.0311682 | Time: 135247 ms
[2022-02-09 02:42:44	                main:574]	:	INFO	:	Epoch 1986 | loss: 0.031121 | val_loss: 0.0311663 | Time: 125819 ms
[2022-02-09 02:45:21	                main:574]	:	INFO	:	Epoch 1987 | loss: 0.0311208 | val_loss: 0.0311629 | Time: 156021 ms
[2022-02-09 02:47:56	                main:574]	:	INFO	:	Epoch 1988 | loss: 0.0311198 | val_loss: 0.0311676 | Time: 144162 ms
[2022-02-09 02:49:39	                main:574]	:	INFO	:	Epoch 1989 | loss: 0.0311165 | val_loss: 0.0311674 | Time: 101589 ms
[2022-02-09 02:51:48	                main:574]	:	INFO	:	Epoch 1990 | loss: 0.0311162 | val_loss: 0.0311703 | Time: 126041 ms
[2022-02-09 02:53:50	                main:574]	:	INFO	:	Epoch 1991 | loss: 0.0311146 | val_loss: 0.0311724 | Time: 120145 ms
[2022-02-09 02:55:20	                main:574]	:	INFO	:	Epoch 1992 | loss: 0.0311203 | val_loss: 0.0311719 | Time: 89516.3 ms
[2022-02-09 02:56:47	                main:574]	:	INFO	:	Epoch 1993 | loss: 0.0311233 | val_loss: 0.0311655 | Time: 86201.5 ms
[2022-02-09 02:57:05	                main:574]	:	INFO	:	Epoch 1994 | loss: 0.0311307 | val_loss: 0.0311764 | Time: 17723.9 ms
[2022-02-09 02:59:03	                main:574]	:	INFO	:	Epoch 1995 | loss: 0.0311485 | val_loss: 0.0311679 | Time: 115994 ms
[2022-02-09 03:01:30	                main:574]	:	INFO	:	Epoch 1996 | loss: 0.0311365 | val_loss: 0.0311663 | Time: 141923 ms
[2022-02-09 03:03:24	                main:574]	:	INFO	:	Epoch 1997 | loss: 0.0311232 | val_loss: 0.0311666 | Time: 113089 ms
[2022-02-09 03:05:05	                main:574]	:	INFO	:	Epoch 1998 | loss: 0.0311228 | val_loss: 0.0311686 | Time: 95116.9 ms
[2022-02-09 03:06:33	                main:574]	:	INFO	:	Epoch 1999 | loss: 0.0311247 | val_loss: 0.0311679 | Time: 88056.2 ms
[2022-02-09 03:08:25	                main:574]	:	INFO	:	Epoch 2000 | loss: 0.0311228 | val_loss: 0.0311696 | Time: 108968 ms
[2022-02-09 03:10:07	                main:574]	:	INFO	:	Epoch 2001 | loss: 0.0311201 | val_loss: 0.0311706 | Time: 88229.5 ms
[2022-02-09 03:12:09	                main:574]	:	INFO	:	Epoch 2002 | loss: 0.0311176 | val_loss: 0.0311696 | Time: 121132 ms
[2022-02-09 03:14:02	                main:574]	:	INFO	:	Epoch 2003 | loss: 0.0311206 | val_loss: 0.03117 | Time: 108825 ms
[2022-02-09 03:16:20	                main:574]	:	INFO	:	Epoch 2004 | loss: 0.0311185 | val_loss: 0.031163 | Time: 137047 ms
[2022-02-09 03:18:11	                main:574]	:	INFO	:	Epoch 2005 | loss: 0.0311208 | val_loss: 0.0311708 | Time: 108765 ms
[2022-02-09 03:19:25	                main:574]	:	INFO	:	Epoch 2006 | loss: 0.0311197 | val_loss: 0.0311716 | Time: 73676.5 ms
[2022-02-09 03:21:09	                main:574]	:	INFO	:	Epoch 2007 | loss: 0.031118 | val_loss: 0.031169 | Time: 102075 ms
[2022-02-09 03:23:27	                main:574]	:	INFO	:	Epoch 2008 | loss: 0.0311165 | val_loss: 0.0311733 | Time: 133070 ms
[2022-02-09 03:25:28	                main:574]	:	INFO	:	Epoch 2009 | loss: 0.0311156 | val_loss: 0.0311669 | Time: 119748 ms
[2022-02-09 03:27:27	                main:574]	:	INFO	:	Epoch 2010 | loss: 0.0311167 | val_loss: 0.0311659 | Time: 114721 ms
[2022-02-09 03:29:19	                main:574]	:	INFO	:	Epoch 2011 | loss: 0.0311141 | val_loss: 0.0311704 | Time: 108488 ms
[2022-02-09 03:32:01	                main:574]	:	INFO	:	Epoch 2012 | loss: 0.0311118 | val_loss: 0.0311697 | Time: 155999 ms
[2022-02-09 03:34:16	                main:574]	:	INFO	:	Epoch 2013 | loss: 0.0311138 | val_loss: 0.0311713 | Time: 134036 ms
[2022-02-09 03:36:38	                main:574]	:	INFO	:	Epoch 2014 | loss: 0.0311166 | val_loss: 0.0311852 | Time: 136750 ms
[2022-02-09 03:38:56	                main:574]	:	INFO	:	Epoch 2015 | loss: 0.0311167 | val_loss: 0.0311688 | Time: 136664 ms
[2022-02-09 03:41:12	                main:574]	:	INFO	:	Epoch 2016 | loss: 0.0311164 | val_loss: 0.031168 | Time: 127531 ms
[2022-02-09 03:43:43	                main:574]	:	INFO	:	Epoch 2017 | loss: 0.0311152 | val_loss: 0.0311679 | Time: 150074 ms
[2022-02-09 03:46:15	                main:574]	:	INFO	:	Epoch 2018 | loss: 0.0311129 | val_loss: 0.031171 | Time: 143434 ms
[2022-02-09 03:48:57	                main:574]	:	INFO	:	Epoch 2019 | loss: 0.0311136 | val_loss: 0.03117 | Time: 160130 ms
[2022-02-09 03:52:21	                main:574]	:	INFO	:	Epoch 2020 | loss: 0.0311146 | val_loss: 0.0311701 | Time: 177936 ms
[2022-02-09 03:55:08	                main:574]	:	INFO	:	Epoch 2021 | loss: 0.0311149 | val_loss: 0.0311742 | Time: 165860 ms
[2022-02-09 03:57:08	                main:574]	:	INFO	:	Epoch 2022 | loss: 0.0311144 | val_loss: 0.0311655 | Time: 108266 ms
[2022-02-09 03:59:01	                main:574]	:	INFO	:	Epoch 2023 | loss: 0.0311171 | val_loss: 0.0311702 | Time: 112719 ms
[2022-02-09 04:01:16	                main:574]	:	INFO	:	Epoch 2024 | loss: 0.0311157 | val_loss: 0.0311668 | Time: 124792 ms
[2022-02-09 04:03:49	                main:574]	:	INFO	:	Epoch 2025 | loss: 0.0311167 | val_loss: 0.0311688 | Time: 152213 ms
[2022-02-09 04:06:25	                main:574]	:	INFO	:	Epoch 2026 | loss: 0.0311234 | val_loss: 0.0311645 | Time: 146914 ms
[2022-02-09 04:08:43	                main:574]	:	INFO	:	Epoch 2027 | loss: 0.0311224 | val_loss: 0.0311643 | Time: 133402 ms
[2022-02-09 04:11:04	                main:574]	:	INFO	:	Epoch 2028 | loss: 0.0311213 | val_loss: 0.031168 | Time: 129519 ms
[2022-02-09 04:14:45	                main:574]	:	INFO	:	Epoch 2029 | loss: 0.0311171 | val_loss: 0.0311619 | Time: 219003 ms
[2022-02-09 04:17:49	                main:574]	:	INFO	:	Epoch 2030 | loss: 0.0311151 | val_loss: 0.0311673 | Time: 176759 ms
[2022-02-09 04:20:18	                main:574]	:	INFO	:	Epoch 2031 | loss: 0.031118 | val_loss: 0.0311658 | Time: 144402 ms
[2022-02-09 04:23:02	                main:574]	:	INFO	:	Epoch 2032 | loss: 0.0311234 | val_loss: 0.0311739 | Time: 155171 ms
[2022-02-09 04:24:17	                main:574]	:	INFO	:	Epoch 2033 | loss: 0.0311227 | val_loss: 0.0311661 | Time: 74260.3 ms
[2022-02-09 04:28:42	                main:574]	:	INFO	:	Epoch 2034 | loss: 0.0311195 | val_loss: 0.031162 | Time: 226845 ms
[2022-02-09 04:31:06	                main:574]	:	INFO	:	Epoch 2035 | loss: 0.0311216 | val_loss: 0.0311617 | Time: 133948 ms
[2022-02-09 04:33:19	                main:574]	:	INFO	:	Epoch 2036 | loss: 0.0311224 | val_loss: 0.0311696 | Time: 131898 ms
[2022-02-09 04:36:20	                main:574]	:	INFO	:	Epoch 2037 | loss: 0.0311185 | val_loss: 0.0311671 | Time: 156698 ms
[2022-02-09 04:42:44	                main:574]	:	INFO	:	Epoch 2038 | loss: 0.031128 | val_loss: 0.0311589 | Time: 383154 ms
[2022-02-09 04:51:31	                main:574]	:	INFO	:	Epoch 2039 | loss: 0.031129 | val_loss: 0.0311617 | Time: 471648 ms
[2022-02-09 04:55:36	                main:574]	:	INFO	:	Epoch 2040 | loss: 0.0311279 | val_loss: 0.0311678 | Time: 200897 ms
[2022-02-09 04:58:01	                main:574]	:	INFO	:	Epoch 2041 | loss: 0.0311232 | val_loss: 0.0311665 | Time: 133162 ms
[2022-02-09 05:00:23	                main:574]	:	INFO	:	Epoch 2042 | loss: 0.031119 | val_loss: 0.0311617 | Time: 141653 ms
[2022-02-09 05:03:34	                main:574]	:	INFO	:	Epoch 2043 | loss: 0.0311166 | val_loss: 0.0311698 | Time: 186127 ms
[2022-02-09 05:06:07	                main:574]	:	INFO	:	Epoch 2044 | loss: 0.0311388 | val_loss: 0.0311683 | Time: 152241 ms
[2022-02-09 05:08:52	                main:574]	:	INFO	:	Epoch 2045 | loss: 0.0311388 | val_loss: 0.0311717 | Time: 159360 ms
[2022-02-09 05:11:24	                main:574]	:	INFO	:	Epoch 2046 | loss: 0.031138 | val_loss: 0.0311721 | Time: 151041 ms
[2022-02-09 05:14:31	                main:574]	:	INFO	:	Epoch 2047 | loss: 0.0311335 | val_loss: 0.0311637 | Time: 163653 ms
[2022-02-09 05:18:27	                main:574]	:	INFO	:	Epoch 2048 | loss: 0.0311294 | val_loss: 0.0311689 | Time: 232197 ms
[2022-02-09 05:18:35	                main:597]	:	INFO	:	Saving trained model to model-final.pt, val_loss 0.0311689
[2022-02-09 05:18:35	                main:603]	:	INFO	:	Saving end state to config to file
[2022-02-09 05:18:36	                main:608]	:	INFO	:	Success, exiting..
05:18:36 (11200): called boinc_finish(0)

</stderr_txt>
]]>


©2022 MLC@Home Team
A project of the Cognition, Robotics, and Learning (CORAL) Lab at the University of Maryland, Baltimore County (UMBC)