| Name | Recent average credit | Country | |
|---|---|---|---|
| 41) XiaoHongFX |
819,520 | 0.09 | China |
| 42) zzxczhouhang |
39,000 | 0.09 | China |
| 43) GXchina |
37,125 | 0.09 | China |
| 44) WANG_233 | 2,519 | 0.09 | China |
| 45) leon |
273,525 | 0.09 | China |
| 46) wayne he | 6,240 | 0.09 | China |
| 47) sky-5462 |
127,140 | 0.09 | |
| 48) liuyun97 |
495,434 | 0.09 | China |
| 49) Magnet |
62,076 | 0.09 | China |
| 50) shandianboluo |
31,039 | 0.09 | China |
| 51) qiangge |
38,480 | 0.09 | China |
| 52) Lawrence |
28,951 | 0.09 | China |
| 53) jylfyzyz |
2,460,786 | 0.09 | China |
| 54) zhouyunbo |
166,660 | 0.09 | China |
| 55) Potlin |
501,459 | 0.09 | China |
| 56) liuhz666 |
11,180 | 0.09 | China |
| 57) NPU-Franklin |
13,439 | 0.09 | China |
| 58) lamka |
143,957 | 0.09 | None |
| 59) jozef j |
229,840 | 0.09 | Norway |
| 60) Wang Tian Yi |
13,780 | 0.09 | China |
©2022 MLC@Home Team
A project of the Cognition, Robotics, and Learning (CORAL) Lab at the University of Maryland, Baltimore County (UMBC)